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SHORT PSEUDORANDOM TEST SEQUENCES

E.J. McCluskey and K.D. Wagner

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory

Departments of Computer Science and Electrical Engineering, Stanford University,
Stanford, CA 94305-4055 USA

ABSTRACT

This paper presents a probabilistic model for pseudorandom testing of combinational
circuits and shows how the general model can be simplified for short test sequences.

INTRODUCTION .

Pseudorandom test pattern generation uses an autonomous linear feedback shift register,
ALFSR, as a source of test vectors. These test vectors can be, and are, used to test both
combinational and sequential networks. Sequential circuit pseudorandom testing is discussed
in [Losq 78].

Only combinational circuit testing is considered here. This discussion applies mainly to
on-line testing in which the test patterns are generated during the test procedure rather than
being stored copies of previously generated patterns. The difference is that all of the first L
vectors in the sequence must be used rather than selected patterns. The patterns may be
generated by circuits or by a program simulating an ALFSR.

The major current issues for pseudorandom test pattern generation are: selecting the test
length, determining the fault coverage, and identifying "random-pattern resistant'" faults
(faults that are hard-to-detect with random patterns). These could, in principle, all be
accomplished by a full single-stuck fault simulation of the network to be tested. e.
development of special purpose equipment is decreasing the cost of fault simulatoi7nDespite
this cost reduction, full fault simulation remains prohibitively expensive for modern large
networks that require long pseudorandom test sequences for adequate fault coverage. The
only viable alternative to full fault simulation appears to be the use of a probabilistic model of
pseudorandom test pattern generation. This is the approach taken here.

Probabilistic modeling of pseudorandom test pattern generation was first proposed in
[Rault 71] and has recently become an area of intense study. In [Shedletsky 77] and most of
the subsequent work, pseudorandom test pattern generation is modeled as a random process.
This random model corresponds to "sampling with replacement" and each input pattern
always has the same probability of occurring. This does not account for the fact that patterns
generated by an ALFSR do not repeat until all of the non-zero patterns occur, the term"pseudorandom," rather than random, is often used to describe this non-repeating
characteristic of ALFSR patterns. A pseudorandom process corresponds to "sampling
without replacement", the model used here. The results obtained using a pseudorandom
model are compared to those based on a random model. For short test sequences the results
for these two models do not differ significantly.

Copyright © 1987 E.J.McCluskey, All Rights Reserved
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Exhaustive (all possible) input patterns are as easy to generate as pseudorandom
patterns. In fact, a simple modification converts an ALFSR to an exhaustive test pattern
generator, [McCluskey 86]. Exhaustive test patterns do not require any fault simulation or
coverage estimation. Pseudorandom patterns should be used only when an exhaustive test is
too long. It thus is reasonable to assume that the length of a pseudorandom test is much
shorter than an exhaustive test. This assumption will be used to simplify the models
developed here. Most of the results thus apply only to short pseudorandom tests, a concept
that will be quantized below. The restriction to short pseudorandom tests is not a
significant drawback since these are the only practical pseudorandom tests.

Networks that require exhaustive test patterns (all possible inputs) for high fault
coverage are possible. Thus, some attribute of the particular network under test must be
taken into consideration in determining a practical pseudorandom test. The network attribute
most relevant to pseudorandom testing appears to be the fault detectability profile introduced
in [Malaiya 84]. The detectability, k, of a fault is the number of network input patterns that
cause that fault to be detected. The fault detectability profile is the set of detectabilities for all
single-stuck faults in the network. There is no reason that other types of faults could not be
considered as well. In an attempt to simplify the analysis, [Shedletsky 77] suggested that
only the "worst case" fault be considered. (Although [Shedletsky 77] didn't use this
terminology, the worst case fault corresponds to the fault with the smallest detectability.)
The inadequacy of this approach is demonstrated in [Wagner 87]. A precise characterization
of the minimum set of fault detectabilities that must be considered is derived here.

The test patterns can be applied to the network-under-test (NUT) either by connecting
the parallel outputs of the ALFSR directly to the network inputs or by shifting the serial
output of the ALFSR into the scan path bistables that connect to the network inputs. In either
structure the number of ALFSR stages need not be the same as the number of network
inputs. The general case of different numbers of inputs and stages is considered here. It will
be demionstrated that the same formulas apply to all situations in which the number of
ALFS, stages isn't smaller than the number of network inputs.

A rrodel for the escape probability of a fault is derived and simplified for faults with
small detectability. The assumption that only faults with low detectabilities need be
considered is justified by demonstrating that these are the only faults that are significant in
calculating the expected fault coverage of a pseudorandom test.

The assumption of short test lengths is then used to further simplifiy the escape
probability expressions, which are then used in formulas for the expected fault coverage of a
pseudorandom test of length L. The concept of a random-pattern resistant fault is quantized.

Copyright © 1987 E.J.McCluskey, All Rights Reserved 2
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ESCAPE PROBABILITY

The major results in this section are expressions for the probability that a fault of a
specific detectability is not detected by a pseudorandom test.

DEFINITION: A pseudorandom test sequence is a sequence of L m-bit binary patterns
that are the consecutive states of some m bit ALFSR. In the analysis here, these will be
modeled as sequences of m-bit patterns chosen randomly, without replacement and with
equal probability, from the set of all M = 2m - I non-zero m-bit patterns. The all-0 pattern is
excluded because it does not occur in an ALFSR.

DEFINITION: A pseudorandom test is the application of a pseudorandom test sequence
to the network under test, NUT, and the observation of the resulting network outputs. The
NUT is assumed to be combinational with n inputs so that the total number of possible input
patterns is N = 2'.

DEFINITION: The detectability, k, of a fault is the number of network input patterns
that cause that fault to be detected (because at least one network output with the fault present
differs from the output without the fault).

For a network consisting of a single 3-input AND Gate, a stuck-at- I fault on an input
lead has k= 1, while k=7 for the stuck-at-1 fault on the output lead.

Another useful parameter when the number of ALFSR stages differs from the number of
circuit inputs is the test source detectability, K.

DEFINITION: The test source detectability, K, of a fault is the number of ALFSR
contents that cause that fault to be detected for a particular test setup.

The detectability k depends only on the network, while the test source detectability, K, is
a function of both the network and the particular test arrangement For example, consider a
network N made up of a single 3-input AND Gate. The stuck-at-0 fault on the gate output is
detected only by the (I 1 1) input pattern, thus k for this fault is 1. If a 3-stage ALFSR is
used to test N, K is also 1. On the other hand, if a 5-stage ALFSR with outputs from 3 of
the stages connected to the network inputs is used, K = 4, since there are 4 ALFSR contents
that produce network inputs that detect the fault.

DEFINITION: The escape probabiliries Qk and QK, are the probabilities that a fault of
detectability k and test source detectability K is not detected.

Copyright ) 1987 E.J.McCluskey, All Rights Reserved 3
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THEOREM 1: For a pseudorandom test the escape probability is given by:

(M-L)
QKK (I)

(M)
K

which can also be written as:

QK = 1(1 - L/(M+1-j)) forj= ItoK (2)

These equations can be simplified to the following bounds which are excellent
approximations to QK for useful numerical values of the parameters in the expressions.

(1 - L /(M-K) ) K  < QK <  (I'-L/M) K  (3)

QK 5 e"KL/M (4)

PROOF: Equation (1) is simply the ratio of the number of ways to choose K positions
for the detecting patterns from the last M-L positions in the ALFSR output sequence that are
not used as test vectors divided by the number of ways to choose K positions from the entire
ALFSR output sequence. A somewhat more complex derivation of a similar result for the
case when m=n is presented in [Wagner 87] where it occurs in equation (8).

Equation (2) is derived by writing out the binomial coefficients in equation (1),
cancelling common factors, and dividing each factor by M. Inequality (3) results from
replacing j by K+ 1 in each factor to obtain the lower bound and replacing j by 1 in each
factor to obtain the upper bound. These bounds are very tight for values of K that are small
compared to M. Detectabilities that are not small compared to M correspond to faults that are
easily detected. Such easily detected faults will be shown to have a negligible effect on the
expected fault coverage. The bounds are thus very good for the hard-to-detect faults which
are the main items studied here.

Inequality (4) is derived from the general inequality In (z) ! z-1. This is proved on page
23 of [Gallager 68]. Replacing z by 1- LJM gives In ( 1-L/M ) ! -IJM, multiplying both
sides by K givesj( ln ( 1 < -K( LIM ), and taking the antilogarithm of both sides
gives (1 - LM )N : e . The equality In ( L/M ) = L/M -I is true only when IJM =
0, but the difference between the two sides is small for small LUM.

A drawback of the expressions of Theorem 1 is their dependence on a particular test
arrangement rather than on only the network being tested. The following theorem presents
expressions for the escape probability that are based on N and k. First, lemmas relating N
and k to M and K will be derived.

Copyright © 1987 E.J.McCluskey, All Rights Reserved 4



Lemma I: When m = n, M = N-I and K = k or k-i. Since pseudorandom testing is only
required for networks with N >> I, there is little loss in assuming that M = N. Whether K
k or k-1 depends on whether the all-0 pattern is one of the k patterns that detect the fault in
question. As will become obvious in the discussion of numerical values of the parameters,
unless k >> 1 the corresponding fault is very likely to go undetected by a pure
pseudorandom test. Thus, it will be assumed that K = k.

Lemma2:Whenm>n(m=n+r,r!l), M=2r2n - l andN = 2n. Thus,M=2rN
- 1 and K = 2r k or 2r k -1. Similar reasons to those given in lemma I permit the Is to be
dropped, giving M = 2 r N and K = 2 r k.

Lemma 3: When m < n (m = n - r, r : 1), M = 2-r 2n -1 and N = 2n. M is smaller than
N, but must still be large compared to 1 so that it can be very accurately approximated by M
= 2-rN. A simple structure for this situation has a test pattern generator consisting of an
m-stage ALFSR with the output of the last stage used as the input of an r-stage shift register.
The structure consisting of the ALFSR and the shift register will be called an extended
register. The n network inputs are taken from the n = m + r outputs of the extended register.
Two types of faults must be considered:

(1) faults for which all of the network input patterns that detect the faults come from a
subset of the extended register outputs that contains at most m contiguous stages. It is easy
to show that any subset of m contiguous stages will contain all possible 2 m - 1 non-zero
binary patterns during one complete cycle of the ALFSR. For such faults, K = k or k- 1. As
discussed in Lemma 1, it will be assumed that K = k.

(2) faults for which at least one of the network input patterns that detects the faults comes
from a subset of the extended register outputs that contains more than n contiguous stages.
A network input pattern derived from more than m continuous extended register stages may
or may not appear in the extended register. Thus for faults of this type K < k.

The results of Lemmas 1-3 are summarized in Table 1.

Table 1. Relations between K and k and between M and N, assuming M >> 1, k >> 1.

m=n M=N K=k

n<m=n+r,r >I M=2rN K=2rk

n>m=n-r,r >1 M=2-rN K _< k

THEOREM 2: When m a n, expression (4) can be restated in terms of k and N.

Qk <  e-'kL/N form2n (5)

Expression (5) is derived by substituting the values from Table 1 into expression (4) and
cancelling common factors. Its advantage over expression (4) is that it depends only on the
network under test and not the particular test structure. For the case where m < n, it is still
necessary to use expression (4) since the escape probability is very dependent on the actual
test structure.

Copyright © 1987 E.J.McCluskey, All Rights Reserved 5



It is interesting to note that if a random source of input patterns is assumed rather than a
pseudorandom source the escape probability is given by:

Qk =(l'k/N)L <e'kL/N (6)

Each input pattern has a probability of k/N of detecting the fault so that the probability of
L patterns not detecting the fault is given by (1 - k / N )L. The inequality in (6) is derived
by the same technique used for expression (4). The sameness of expressions (6) and (5)
explains why some of the earlier papers on pseudorandom testing obtained valid results even
though they use a random model rather than the more correct pseudorandom model.

Copyright © 1987 E.J.McCluskey, All Rights Reserved 6
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FAULT COVERAGE

The quality of a test procedure is usually expressed in terms of the single-stuck fault
coverage, the percentage of all single-stuck faults detected. Single-stuck faults are used
because their use in the past has produced valuable results and they are the only type of faults
for which reasonable computation procedures have been developed. In fact, they are so
common that the qualifier is often dropped and the term fault coverage is used to mean
single-stuck fault coverage. The techniques developed here are more general and the
single-stuck fault assumption will only be required when techniques for computing the fault
detectabilities k and K are discussed.

By using the expressions developed for the escape probability, it is straightforward to
obtain expressions for the expected fault coverage, E(C):

E(C) = 1 - 1/nf 7 hk Qk

> 1 - 1/nf Y hk e - k L/N form n, I:k<N-L

> 1 - 1/nf h e "kL /M form<n, I<K<M-L

nf = number of possible faults
hk =number of faults with detectability k
hK =number of faults with test source detectability K

It is often convenient to dalculate the expected number of undetected faults:
E(U) =-1- E(C) = 1/nf X hk Qk

The relative contributions of the faults with different detectabilities can be made more
explicit by rewriting this expression in terms of the minimum-detectability fault. The details
are shown only for m > n, but similar results apply when m < n.

DEFINITION: Let

g be the minimum value of detectability k,

q = e g L/N , the escape probability of a fault with this lowest value of k, and

gk be k/g, the normalized detectability. Thus: k = gk g

Numerical values for these quantities for the '181 ALU are given in Table 2.

The expression for E(U) then can be written in terms of the normalized detectabilities as:

E(U)= l/nf I hk e-kL/N = l/nf 7 hk (e -g LN)gk= 1/nfI hk (q)gk, m2tn

This expression shows that if the escape probability q for the lowest detectability fault is
small, the escape probabilities for higher detectability faults will be exponentially lower. In
spite of this, if some of the qk are only slightly greater than one, they will still have a

significant effect on E(U). The same conclusion is valid if some of the higher detectability
faults have large values of hk.

Copyright © 1987 E.J.McCluskey, All Rights Reserved 7



RANDOM PATTERN RESISTANT FAULTS

The concept of a "random pattern resistant" fault was introduced in [Eichelberger 83]
which discusses the possibility that there are faults that are difficult to detect with a
pseudorandom test. A mathematical characterization of such a fault is one with a low
probability of detection or equivalently a large Qk" This can be caused by a low detectability
k or by a low test source detectability K due to a loss of detectability when the number of
network inputs n is larger than the number of ALFSR stages. It is also possible that the
lowest detectability is not alone sufficient to cause a significant loss of fault coverage, but
there are very many faults with this lowest detectability so that taken together they produce a
low value of coverage.

A more quantitative characterization results from assuming that:
(1) A "random pattern resistant" fault is one for which the escape probability is more

than one half, and
(2) The pseudorandom test length is L = 220.

This test length corresponds to slightly more than one million test vectors which seems a
reasonable upper bound on a practical test length. It follows from these assumptions that:

Qk > 1/2 or e-kL /N > 1/2 so that

kL/N < In 2, k/N < (ln2)/22 0 = 6.6 x 10-7

so that a random pattern resistant fault is one for which

k < 6.6N x 10-7

SOME NUMERICAL EXAMPLES

This section presents some data from published studies of pseudorandom testing. The
major purpose is to put into perspective the assumptions that have been made about the
relative parameter values. The circuit considered first is the '181 ALU. This circuit has been
used extensively in testing studies because it was the most complex of the common standard
combinational parts. Since the ALU has only 14 inputs, pseudorandom testing is not
required since exhaustive testing is feasible. This ALU is too small to be a good example for
pseudorandom test. In spite of this, it is probably the circuit for which most data is available
which is why it is included here. In particular, the complete fault detectability profile for the
ALU has been computed by exhaustive simulation of all single-stuck faults, [Wagner 87].

Calculation of the detectability profile. For circuits so large that pseudorandom
testing is required, it clearly isn't feasible to find the detectability profile by exhaustive
simulation. This has caused some skepticism about using the detectabilities to study
pseudorandom testing. As will be demonstrated in the following, the complete detectability
profile isn't required for useful results. A method has been developed for deriving the
detectabilities that can find the smaller detectabilities without having to obtain the entire
profile. This method does not require exhaustive simulation. It is a generalization of the

Copyright © 1987 E.J.McCluskey, All Rights Reserved 8
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profile. This method does not require exhaustive simulation. It is a generalization of the
approach described in [lIlman 85], and is based on the use of circuit cones and segments.
The detectability profile of the '181 ALU has been derived by hand using this method. A
paper describing this method is currently being prepared.

Data for the '181 ALU. Table 2 shows the relevant parameters for the ALU. The
detectabilities shown are the seven smallest values. Simulation was used in [Chin 871 to
derive the expected fault coverage, E( 1- Qk ), for the fault with the lowest detectability (96).

Table 2. Parameters of the '181 ALU
.4 ----------------------------------------------------------------------------

n 14
N 16,364
nf 400
k 96 128 176 192 216 256 264
hk 1 1 1 7 1 2 1
g 96
gk 1 1.33 1.833 2 2.25 2.69 2.75

+----------------------------------------------------------------------------------

The results of this study are shown in Table 3 along with the theoretical estimates using Qk

e - 96 LIN based on expression (6).

Table 3 Estimated Expected Coverage for the Detectability-96 ALU Fault.

Simulation Data I Theoretical Values
L L/N E(1-Qk) 1 1-e- 9 6LN
----------------------------------- +--- ---------------------

136 0.0083 0.581 0.549
272 0.0166 0.829 0.797
320 0.0195 0.874 0.847
388 0.024 0.921 0.900
502 0.031 0.968 0.949
766 0.047 1.00 0.989

The differences between the simulated values and the theoretical values are due to the fact
that the test lengths studied are not as short as assumed in the approximations used. As
shown in the following section, test lengths for actual pseudorandom tests are much shorter
than those used for the ALU.

Data for the Brglez Benchmark Circuits. A set of 10 circuits was proposed in
[Brglez 85] for use as testing benchmarks. Another paper at the same conference, [C-,ter
85], reports the results of pseudorandom simulations of the Brglez circuits. In these ,.ircuits
n, the number of inputs ranges from 32 to 233. Table 4 summarizes the simulation data from

Copyright © 1987 E.J.McCluskey, All Rights Reserved 9



this paper. The normalized test length (L/N) ranges from 2-20 to 2-212 which justifies the
assumption that L << N.

Table 4. Simulation Data for the Brglez Circuits
Circuit C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7522
Coverage 99.23 98.94 100 99.49 99.52 95.29 96.00 98.89 99.56 97.40
n 36 41 60 41 33 233 50 178 32 207
TestL 211 212 214 212 213 221 215 213 28 221

L/N 2-25 2-29 2-42 2-29 2-20 2-212 2-35  2165 2-24 2-186

SUMMARY AND CONCLUSIONS

Accurate approximations for the escape probability of a fault during pseudorandom
testing have been developed with particular emphasis on the situation where the test length is
a very small fraction of the total number of possible network input patterns. The normalized
test length can be determined by assuming a value of the actual test length based on the
amount of time that can be devoted to testing, for example L = 220. Based on the number of
circuit inputs n, it is then possible to use the expression, Qk - e - k L/N to estimate the
minimum acceptable value for k. The network must then be analyzed to determine whether
faults with lower values of k are possible. If this is true, modification of the network as
discussed in [Eichelberger 83] must be considered. A technique for estimating the k's will
be described in a paper under preparation. It should be pointed out that if there are only a
few faults with unacceptably low k values, it may be possible to use an initial seed state in
the ALFSR to eliminate the possibility that they aren't detected.
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